What drives your publication impact?

How to inform your publishing strategy decisions using data from Incites and Web of Science

Rachel Mangan, Solutions Specialist, EMEA
rachel.mangan@clarivate.com

September 18, 2018
Agenda

• The Foundation:
 • Web of Science Core Collection content selection and data curation
 • Metadata available and how it can be used for journal management

• Introduction to normalised metrics indicators of top performance (CNCI, JNCI, Percentile) to help target strategies

• Examples of types of analysis you can perform to inform journal management

• Q&A
Data Foundation: Objective, Complete and Optimal Coverage

20,000+ journals indexed cover-to-cover
✓ Multidisciplinary
✓ International
✓ Influential

Careful and objective journal selection performed by a dedicated team that is independent from any commercial or publishing activities.

Web of Science Core Collection
Science Citation Index Expanded
Social Sciences Citation Index
Arts & Humanities Citation Index
Conference Proceedings Citation Index
Emerging Sources Citation Index
Book Citation Index

Over 71M+ records (64M from journals, 6M proceedings, 1.3M books/chapters)
100% with cited references, provide industry leading metadata to power your discovery and analytics.
Metadata and value for targeted analysis

- **100% author names indexed:**
 - Researchers working in the field
 - Identify experts and reviewers

- **20,000+ journals:**
 - Identify journals publishing top performing research
 - Understand your journals' contributions
 - Understand your competitors' contributions
 - Analyze Open Access impact at journal/publisher level

- **All affiliations indexed:**
 - Institution and country level analysis to target campaigns
 - Identify top performing/centers of excellence
 - Identify organizations 'using' your journals

- **Funders captured since 2008:**
 - 1,000+ funders unified for better analysis
 - Analyze funding sources of the research your journals publish
 - Identify funding sources in competitor journals
 - Target funders of open access research

A Programable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity

By: Jinek, M; Chylinski, K; Chylinski, Krysztof; Fonfara, I; Hauer, M; Hauer, Michael; Doudna, J; Charpentier, E

Funding

<table>
<thead>
<tr>
<th>Funding Agency</th>
<th>Grant Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>HHMI</td>
<td></td>
</tr>
<tr>
<td>Austrian Science Fund</td>
<td>W1207-B09</td>
</tr>
<tr>
<td>Univ. of Vienna</td>
<td></td>
</tr>
</tbody>
</table>
Metadata and value for targeted analysis

To whom will this impact contribute?

Citation Network
In Web of Science Core Collection
3,323

Highly Cited Paper

To authors

A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity

By: Jinek, M (Jinek, Martin)[1,2]; Chylinski, K (Chylinski, Krzysztof)[3,4]; Fonfara, I (Fonfara, Inas)[4]; Hauer, M (Hauer, Michael)[2]; Doudna, JA (Doudna, Jennifer A.)[1,2,5,6]; Charpentier, E (Charpentier, Emmanuelle)[4]

View ResearcherID and ORCID

To journals and publishers

Science

AAAS

Volume: 337 Issue: 6096 Pages: 816-821
DOI: 10.1126/science.1225829
Published: AUG 17 2012
Document Type: Article
View Journal Impact

To countries

Integration of this publication in a 1.3 Billion cited references citation network

To Research organizations

Berkeley
universität
UMEÅ

To Funders

Funding

<table>
<thead>
<tr>
<th>Funding Agency</th>
<th>Grant Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>HHMI</td>
<td></td>
</tr>
<tr>
<td>Austrian Science Fund</td>
<td>W1207-B09</td>
</tr>
<tr>
<td>Univ. of Vienna</td>
<td></td>
</tr>
</tbody>
</table>
Data cleansing
Consolidated metadata is necessary for accurate and reliable analysis

FROM ADDRESSES

<table>
<thead>
<tr>
<th>Organization</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arctic Univ Norway Tromso</td>
<td>Tromso, Norway</td>
</tr>
<tr>
<td>Arctic Univ Norway UiT</td>
<td>Kirkenes, Norway</td>
</tr>
<tr>
<td>Arctic Univ Norway UiT</td>
<td>Tromso, Norway</td>
</tr>
<tr>
<td>Arctic Univ Tromso</td>
<td>Norway, Europe</td>
</tr>
<tr>
<td>Arctic Univ Tromso</td>
<td>Norway, Europe</td>
</tr>
<tr>
<td>Artic Univ Norway UiT</td>
<td>Tromso, Norway</td>
</tr>
<tr>
<td>Elect Eng Space Technol Narvik Univ Coll</td>
<td>Norway, Europe</td>
</tr>
<tr>
<td>Harstad Coll</td>
<td>Norway, Europe</td>
</tr>
<tr>
<td>Harstad College</td>
<td>Norway, Europe</td>
</tr>
<tr>
<td>Harstad Univ Coll</td>
<td>Norway, Europe</td>
</tr>
</tbody>
</table>

900K+ Manual unification rules are used

11,649+ Unified Organizations

FROM AUTHOR ACKNOWLEDGEMENTS

This publication is part of the inGAP Centre for Research-based Innovation, which receives financial support from the Norwegian Research Council under contract no. 174893.

The financial support of the Research Council of Norway through the NANOMAT project 182056/S10 and the European Union (NMP project "MOFCAT", grant 033335, and ERC "DECARbit", grant 211971) is gratefully acknowledged.

We thank the scientific partners of the BiodivERsA project. This research was funded by the ERA-Net BiodivERsA project "BUFFER Partially protected areas as buffers to increase the linked social ecological resilience", with the national funders ANR (France), FCT (Portugal), FOR-MAS and SEPA (Sweden) and RCN (Norway). B.H.C. and G.F. had grants under the project BUFFER. B.H.C. benefited

1,000+ Unified Funders

<table>
<thead>
<tr>
<th>Funders</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)</td>
<td>25,714</td>
</tr>
<tr>
<td>Research Council of Norway</td>
<td>25,543</td>
</tr>
<tr>
<td>Ministry of Education, China - 111 Project</td>
<td>25,259</td>
</tr>
<tr>
<td>Royal Society</td>
<td>25,199</td>
</tr>
<tr>
<td>European Social Fund (ESF)</td>
<td>25,012</td>
</tr>
<tr>
<td>National Key Technology R&D Program</td>
<td>24,791</td>
</tr>
</tbody>
</table>
The Web of Science Core Collection is the foundation of InCites

WEB OF SCIENCE CORE COLLECTION
Science Citation Index-Expanded
Social Sciences Citation Index
Arts & Humanities Citation Index
Conference Proceedings Citation Index
Book Citation Index
Emerging Sources Citation Index

59 Million publications (1980-2018)

Updated Monthly

InCites Benchmarking & Analytics

14 research schemas
252 Web of Science Categories
1040+ funders
100+ Countries
11,637+ Institutions
20,300+ Journals
6M+ Conference Proceedings
1.3M+ Scholarly Books/chapters
The Web of Science Core Collection is the foundation of Incites

Incites leverages the Web of Science Core Collection powerful metadata to:
- Provide powerful filtering capabilities for precise and accurate analysis:

![Screenshot of Incites filtering options]

- Journal Name
- Publisher
- Document Type
- Funding Agency
- Research Area
- Organization Name
- Organization Type
- Location
- Thresholds
- Person Name or ID

[Clarivate Analytics logo]
The Web of Science Core Collection is the foundation of Incites

Incites leverages the Web of Science Core Collection powerful metadata to:
- **Normalize Citation impacts** and generate intelligent metrics for true and fair benchmarking of citation impacts:

- % Documents in Q1 Journals
- % Documents in Q2 Journals
- % Documents in Q3 Journals
- % Documents in Q4 Journals
- % Highly Cited Papers
- % Documents in Top 1%
- % Documents in Top 10%
- % Hot Papers
- Impact Relative to World
- Journal Normalized Citation Impact
- Average Percentile
- Category Normalized Citation Impact
- % Documents Cited

Indicator Handbook:
Why is citation normalization necessary?
Example: France vs. China in Wiley journals

Normalised Impact over time: France publications by volume of papers in Wiley have continuously performed above the category baseline (set at 1)

From 2011 China has produced publications with an impact exceeding the world baseline

<table>
<thead>
<tr>
<th>Name</th>
<th>Rank</th>
<th>Web of Science Documents</th>
<th>Category Normalized Citation Impact</th>
<th>Times Cited</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHINA MAINLAND</td>
<td>1</td>
<td>217,693</td>
<td>1.06</td>
<td>3,274,741</td>
</tr>
<tr>
<td>FRANCE</td>
<td>2</td>
<td>198,776</td>
<td>1.27</td>
<td>4,669,350</td>
</tr>
</tbody>
</table>
How do we normalize citation counts? (Context is everything)

This paper has received 15 citations: Is this a strong or a weak impact?

<table>
<thead>
<tr>
<th>Article Title</th>
<th>Authors</th>
<th>Source</th>
<th>Research Area</th>
<th>Publication Date</th>
<th>Times Cited</th>
<th>Journal Expected Citations</th>
<th>Category Expected Citations</th>
<th>Journal Normalized Citation Impact</th>
<th>Category Normalized Citation Impact</th>
<th>Percentile in Subject Area</th>
<th>Journal Impact Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selective executive dysfunction but intact risky decision-making in early</td>
<td>Holl, Anna K.; Wilkinson,</td>
<td>MOVEMENT</td>
<td>CLINICAL</td>
<td>2013</td>
<td>15</td>
<td>19.98</td>
<td>13.03</td>
<td>0.75</td>
<td>1.15</td>
<td>27.54</td>
<td>8.32</td>
</tr>
<tr>
<td>Huntington’s disease</td>
<td>Leonora; Tabrizi, Sarah J.;</td>
<td>DISORDERS</td>
<td>NEUROLOGY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Painold, Annamaria;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jahanshahi, Marjan</td>
<td></td>
</tr>
</tbody>
</table>

Journal expected citations average number of citations for the same document type published in the same year in the journal

Category expected citations average number of citations for the same document type published in the same year in the category

Journal Normalized Citation Impact ratio of actual times cited to journal expected citations

Category Normalized Citation Impact ratio of actual times cited to category expected citations

Percentile in Subject Area position out of 100% in the citation distribution for the same document type, publication year, and subject category

15 citations mean an impact **25%** below the journal’s expected impact

15 citations mean an impact **15% higher** than the category’s expected impact

Out of 100%, this paper is positioned just outside the top **27%**
Before conducting an analysis using citation metrics: some important considerations…

• Garbage in Garbage out, so am I using the right data?

• My needs are very targeted so what limitations will I need to apply? (years, document types, publishers, regions, thresholds, etc.)

• The Journal Impact Factor will not answer all questions, so how do I best ‘measure’ my question?
Lets get to work!

Live Incites overview
CRISPR is a family of DNA sequences in bacteria and archaea. The sequences contain snippets of DNA from viruses that have attacked the prokaryote. These snippets are used by the prokaryote to detect and destroy DNA from similar viruses during subsequent attacks.

This system that can be programmed to target specific stretches of genetic code and to edit DNA at precise locations.

Researchers can permanently modify genes in living cells and organisms and, in the future, may make it possible to correct mutations at precise locations in the human genome in order to treat genetic causes of disease.

CRISPRs were first discovered in archaea (and later in bacteria) by Francisco Mojica, a scientist at the University of Alicante in Spain.

Source: https://www.broadinstitute.org/what-broad/areas-focus/project-spotlight/questions-and-answers-about-crispr
Case Study on CRISPR research: Examples of how Incites can help support journal management decisions

- What is the publication growth of this topic and which countries are contributing to the growth?
- Which are the institutions producing CRISPR research and how can I identify top performing institutions?
- How can I identify impactful authors in this topic and identify where they publish?
- What is the Open Access market like?
- Which journals are publishing top performing research in CRISPR? CNCI
- Is CRISPR research contributing to the citation impact of my journal? JNCI
- What are the funding sources of CRISPR research? Which are the sources of top performing research?
- How much research do my journals contribute to CRISPR research overall?
- How can I support subscriptions (new & retention) and provide evidence that institution X is using our titles?
Case Study on CRISPR research:
Examples of how Incites can help support journal management decisions
Collect a CRISPR dataset in Web of Science Core Collection and send to Incites for analysis

8,497 CRISPR papers were sent to Incites for analysis
Understanding the CRISPR research landscape

1. What is the global publication growth of CRISPR and which countries are the top 10 contributing to growth?

USA papers contribute 49% of CRISPR research

Significant increase in CRISPR research from 2012 for USA
Understanding the CRISPR research landscape:

2. Which are the institutions producing CRISPR research?
Understanding who is driving impact:

2. How can I identify top performing institutions?

Incites offers a range of normalised indicators in order to build a more complete picture of impact and performance.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Rank</td>
<td>Web of</td>
<td>Category</td>
<td>Times Cited</td>
<td>% Docs</td>
<td>% Highly Cited</td>
<td>% Documents in Top 1%</td>
<td></td>
</tr>
<tr>
<td>Broad Institute</td>
<td>8</td>
<td>218</td>
<td>13.63</td>
<td>29503</td>
<td>87.61</td>
<td>36.7</td>
<td>80</td>
<td>94.39</td>
</tr>
<tr>
<td>Massachusetts Institute of Technology</td>
<td>4</td>
<td>344</td>
<td>10.61</td>
<td>34931</td>
<td>87.79</td>
<td>29.07</td>
<td>100</td>
<td>93.11</td>
</tr>
<tr>
<td>Howard Hughes Medical Institute</td>
<td>5</td>
<td>310</td>
<td>8.52</td>
<td>27501</td>
<td>91.94</td>
<td>28.71</td>
<td>89</td>
<td>93.9</td>
</tr>
<tr>
<td>Harvard University</td>
<td>2</td>
<td>561</td>
<td>8.97</td>
<td>48413</td>
<td>85.56</td>
<td>23.71</td>
<td>133</td>
<td>93.06</td>
</tr>
<tr>
<td>University of California Berkeley</td>
<td>9</td>
<td>203</td>
<td>7.18</td>
<td>17928</td>
<td>89.16</td>
<td>24.14</td>
<td>49</td>
<td>88.32</td>
</tr>
<tr>
<td>VA Boston Healthcare System</td>
<td>6</td>
<td>273</td>
<td>6.65</td>
<td>15638</td>
<td>84.25</td>
<td>16.85</td>
<td>46</td>
<td>93.8</td>
</tr>
<tr>
<td>University of California System</td>
<td>1</td>
<td>610</td>
<td>4.66</td>
<td>27141</td>
<td>80.33</td>
<td>14.92</td>
<td>91</td>
<td>84.97</td>
</tr>
<tr>
<td>Chinese Academy of Sciences</td>
<td>3</td>
<td>345</td>
<td>4.04</td>
<td>9568</td>
<td>88.7</td>
<td>10.72</td>
<td>37</td>
<td>79.28</td>
</tr>
<tr>
<td>National Institutes of Health</td>
<td>NIH</td>
<td>7</td>
<td>246</td>
<td>4.1</td>
<td>9446</td>
<td>83.33</td>
<td>10.58</td>
<td>26</td>
</tr>
<tr>
<td>Centre National de la Recherche</td>
<td>S 10</td>
<td>199</td>
<td>2.39</td>
<td>4142</td>
<td>80.4</td>
<td>5.03</td>
<td>10</td>
<td>68.62</td>
</tr>
</tbody>
</table>

- 218 papers on CRISPR
- 42.2% in top 1%
- 37.7% highly cited papers
- 80 Highly Cited Papers
- CNCI of 13.63
Understanding who is driving impact:

3. How can I identify impactful authors in this topic? Focus on Sweden

- Using a Scatter Plot we can make comparisons of positioning using a range of indicators
- Not the top producing author yet generating very impactful research
- Looks interesting… we can investigate more with Incites

123 papers Sweden
CNCl of 6.27
17.07% papers in top 1%
Who is driving impact?

<table>
<thead>
<tr>
<th>Name</th>
<th>Rank</th>
<th>Affiliation</th>
<th># of Papers</th>
<th>% Docs Cited</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chylinski, Krzysztof</td>
<td>1</td>
<td>University of Vienna</td>
<td>6</td>
<td>100%</td>
</tr>
<tr>
<td>Chylinski, Krzysztof</td>
<td>1</td>
<td>Umea University</td>
<td>6</td>
<td>100%</td>
</tr>
<tr>
<td>Chylinski, Krzysztof</td>
<td>1</td>
<td>Max F. Perutz Laboratories (MFPL)</td>
<td>6</td>
<td>100%</td>
</tr>
</tbody>
</table>

Based on the analysis, this researcher could be one to target as a reviewer…

![Clarivate Analytics](Image)

Build your analysis in Incites then feedback papers to Web of Science in order to explore the research in full.

- 6 papers
- CNCI of 34.04
- 67% papers in top 1%
- JNCl of 5.72
- 83% Highly Cited Papers
Understanding the publishing landscape and contribution of CRISPR search

3. Where is CRISPR research published? Focus on Sweden
What is the contribution of CRISPR research to a journal's impact?

- CRISPR papers from Sweden are pushing up the impact of Plant Cell Reports more than in other journals.
- The CRISPR papers have an impact that is 10 times above the average impact of the journal (papers from same year and document type)
Understanding the publishing landscape of CRISPR research

4. What is the Open Access (GOLD) market like?

- 201 Open Access (Gold) Titles
- Scientific Reports top producing Open Access journal

Web of Science
Trust the difference
Understanding the publishing landscape of CRISPR research

5. Which journals are publishing top performing research in CRISPR (CNCI)

<table>
<thead>
<tr>
<th>Journal Name</th>
<th>CNCI</th>
<th>Papers Published</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scientific Reports</td>
<td>2.06</td>
<td>418</td>
</tr>
<tr>
<td>PLOS ONE</td>
<td>1.59</td>
<td>261</td>
</tr>
<tr>
<td>Nucleic Acids Research</td>
<td>3.36</td>
<td>194</td>
</tr>
<tr>
<td>Molecular Therapy</td>
<td>3.47</td>
<td>187</td>
</tr>
<tr>
<td>Proceedings of the National Academy of Sciences</td>
<td>4.25</td>
<td>159</td>
</tr>
<tr>
<td>Nature Communications</td>
<td>4.10</td>
<td>146</td>
</tr>
<tr>
<td>Transgenic Research</td>
<td>1.22</td>
<td>134</td>
</tr>
<tr>
<td>Human Gene Therapy</td>
<td>1.22</td>
<td>132</td>
</tr>
<tr>
<td>Nature Biotechnology</td>
<td>1.22</td>
<td>121</td>
</tr>
<tr>
<td>Nature</td>
<td></td>
<td>14.73</td>
</tr>
</tbody>
</table>

- **Scientific Reports** is the overall top publishing journal on CRISPR research out of 1,365 titles.
- Scientific Reports published 5% of CRISPR papers.
- Out of the top 10 publishing journals, Nature Biotechnology has the highest CNCI.
- The CRISPR papers this journal has published have an impact 18 times above the expected impact of the field.
Understanding the contribution of CRISPR research

6. Is CRISPR research contributing to the citation impact of my journals? JNCI Focus on Nature Publishing Group

<table>
<thead>
<tr>
<th>Journal</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAB ANIMAL</td>
<td>10.31</td>
</tr>
<tr>
<td>NATURE REVIEWS NEUROLOGY</td>
<td>5.51</td>
</tr>
<tr>
<td>NATURE PLANTS</td>
<td>4.46</td>
</tr>
<tr>
<td>BRITISH JOURNAL OF CANCER</td>
<td>3.71</td>
</tr>
<tr>
<td>GENE THERAPY</td>
<td>3.25</td>
</tr>
<tr>
<td>CELL DISCOVERY</td>
<td>3.16</td>
</tr>
<tr>
<td>NATURE BIOTECHNOLOGY</td>
<td>2.64</td>
</tr>
<tr>
<td>NATURE PROTOCOLS</td>
<td>2.62</td>
</tr>
<tr>
<td>NEUROPSYCHOPHARMACOLOGY</td>
<td>2.32</td>
</tr>
<tr>
<td>EUROPEAN JOURNAL OF HUMAN GENETICS</td>
<td>2.10</td>
</tr>
<tr>
<td>NATURE REVIEWS MOLECULAR CELL BIOLOGY</td>
<td>2.08</td>
</tr>
<tr>
<td>NATURE</td>
<td>1.90</td>
</tr>
<tr>
<td>SCIENTIFIC REPORTS</td>
<td>1.89</td>
</tr>
<tr>
<td>NATURE REVIEWS CARDIOLOGY</td>
<td>1.83</td>
</tr>
</tbody>
</table>

- CRISPR papers published in **LAB ANIMAL** have an impact that is **10 times higher** than other similar research in this journal
- Out of all the Nature Publishing Group titles publishing CRISPR research, **LAB ANIMAL** benefits the most from increased impact
Understanding the research landscape

7. What are the funding sources of CRISPR research? Which are the sources of top performing research?

<table>
<thead>
<tr>
<th>Funding Source</th>
<th>CNCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Institutes of Health (NIH) - USA</td>
<td>5.33</td>
</tr>
<tr>
<td>National Natural Science Foundation of China</td>
<td>3.92</td>
</tr>
<tr>
<td>National Science Foundation (NSF)</td>
<td>3.05</td>
</tr>
<tr>
<td>German Research Foundation (DFG)</td>
<td>2.36</td>
</tr>
<tr>
<td>Japan Society for the Promotion of Science</td>
<td>2.26</td>
</tr>
<tr>
<td>National Basic Research Program of China</td>
<td>2.12</td>
</tr>
<tr>
<td>NIH National Cancer Institute (NCI)</td>
<td>1.44</td>
</tr>
<tr>
<td>Ministry of Education, Culture, Sports, Science and Technology, Japan</td>
<td>1.13</td>
</tr>
<tr>
<td>Howard Hughes Medical Institute</td>
<td>1.11</td>
</tr>
<tr>
<td>Welcome Trust</td>
<td>1.11</td>
</tr>
</tbody>
</table>

- NIH USA is a top funding source for CRISPR research
- 20.5% of CRISPR papers are funded by the NIH USA

Out of the top 10 funding sources of CRISPR research, research funded by Howard Hughes Medical Institute has the highest CNCI of 11.41, meaning that the research has an impact 11 times above the expected impact (comparison to the rest of the world)
Understanding the publishing landscape of CRISPR research

8. How much research do my journals contribute to CRISPR research overall?

Comparison of *Nature Publishing Group* and *Elsevier* contribution to CRISPR papers

Download your data including trended data to produce other types of analysis such as market share.
Understanding the publishing landscape of CRISPR research

8. How much research do my journals contribute to CRISPR research overall?

Comparison of *Nature Publishing Group* and *Elsevier* contribution to CRISPR papers

- Nature Publishing Group has 14% market share of CRISPR research
- Elsevier has 7% market share of CRISPR research
Understanding Journal usage

Provide evidence that organisations are ‘using’ your journals to help support subscriptions

- Which of my journals are authors from the University of Granada citing?
- I can prove that University of Granada is using my journals for subscription renewals/ opportunities

Top 10 Emerald titles cited by authors from University of Granada out of 19 in total (2006-2018)
Questions and Answers
More information

- http://clarivate.libguides.com/home

- https://clarivate.com/products/incites/
Thank you!

rachel.mangan@clarivate.com