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Toxicity at the forefront
The global toxicity testing market 
is projected to reach $23.55 
billion in the next 2 years.1 

A wide range of industries producing 
food, personal care products and 
agricultural commodities rely on 
toxicity testing to ensure the safety of 
these products for human use and/
or consumption. The biotechnology 
and pharmaceutical markets might 
represent a couple of the biggest 
drivers of this market. It is estimated 
that for every eight active substances 
entering Phase I clinical trials, only one 
product is approved and marketed.2 
The low success rate for clinical trials 
is largely driven by two factors: poor 
efficacy in humans and adverse 
events leading to the discontinuation 
of a drug development program.3 
Unanticipated preclinical toxicity and 
adverse events in the clinical stage 
are leading causes of drug attrition, 
directly contributing to the rapidly 
increasing costs of drug development. 

A variety of factors contribute to 
adverse outcomes for a given therapy. 
Largely, these are determined by the 
inherent properties of the therapy 
itself, such as toxicity related to on 
and off-target effects, metabolism and 
pharmacokinetics of a compound. 
However, there is also a growing 
appreciation for the nuanced role of 

genetics in determining the extent 
of an adverse outcome for a given 
individual. Collectively, these findings 
can be used to improve the overall 
success rates of a drug development 
program. In the sections below, 
we discuss how each step in the 
drug discovery phase is crucial to 
improving the success rates and some 
of the best practices that could be 
incorporated into the workflow.

Addressing  
off-target effects  
and considering  
the role of genetics 
in adverse outcomes 
has the potential 
to improve overall 
success rates of a 
drug development 
program.
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Figure 1: Neighborhood analysis of the target IKK-B.

Starting early: identifying risks  
at the discovery stage
For every drug that is approved 
by a regulatory agency, 5,000 to 
10,000 chemicals are screened in 
the early discovery stage, of which 
only a few hundred are pursued 
for preclinical development.3 

With global R&D expenditure 
projected to reach $92 billion by 2022, 
investors are eager to ensure that their 
money is well-spent by advancing the 
most robust and least risky candidate 
to the clinic.2 It is therefore necessary 
to critically evaluate all aspects of this 
stage that could potentially impact 
the overall cost and time to identify 
a lead candidate. From a safety 
perspective, some of the important 
considerations include target 
liability; analysis; drug design, lead 
identification; and drug repurposing.

Target liability

The foundation for early discovery 
research is almost always published 
literature. Thus, the focus at this stage 
is to replicate the validity of existing 
evidence and identify druggable 
targets and/or disease areas for drug 
development. While establishing proof 
of concept can be a challenging task 
in itself, potential safety liabilities for 
a given target need to be assessed 
in addition to determining whether 
pursuit of a novel target, in an effort to 
be first-in-class, could result in wasted 
time, money and resources if the drug 
is associated with adverse side effects. 

An inherent risk with novel targets 
is that not much is typically known 
about associated toxicity, aside from 

pre-existing data (if any) from gene 
silencing or knockout studies. At a 
preliminary level, using a network-
based approach to understand the 
target neighborhood could offer unique 
insights into potential mechanistic 
pathways for adverse outcomes and 
mitigation plans. The strategy then is 
not to necessarily abandon the target 
but to anticipate and be prepared to 
address issues arising from preclinical 
toxicity or adverse events at the 
clinical stage. As shown in Figure 1, 
neighborhood analysis of an emerging 
target, IKKB, shows its direct interaction 
with many targets associated with class 
alerts. Considering this information 
during therapeutic development can 
help mitigate unintended risks that 
result from a positive or negative impact 
to these neighborhood relationships.
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Class alert Drug alert

Targets in purple have known class alerts while the target in blue has a safety alert associated with a drug against it. Known 
class alerts are used when the target family is linked to adverse events demonstrated in preclinical knockdown/knockout 
models or have known human gene-disease association.
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Integrated approach  
to data analysis

A more holistic approach to 
understanding preclinical toxicity 
is combining multi-OMICs datasets 
(genomics, transcriptomic, 
metabolomic and proteomic) to 

identify toxicity-specific biomarkers 
and pathways impacted by treatment 
with a candidate drug. Rather than 
assessing neighborhoods around a 
single target or biomarker of interest, 
this approach helps understand overall 
pathways and processes perturbed 
by a drug (Figure 2).4,5 Assessing 
treatment outcomes at multiple 

molecular levels not only offers cross-
validation of the experimental data 
but also helps identify key players 
previously unknown to the toxicity 
mechanism. Integrative use of multi-
OMICs data was previously shown to 
identify mechanisms and biomarkers 
for liver injury associated with drugs 
such as cyclosporin S and bosentan.6

Figure 2: Integrative data analysis to identify biological pathways with greatest impact from a drug treatment.

Source: MetaCore, a Cortellis™ solution

This top ranking pathway map from the combined analysis of proteomics (experiments 1 and 3) and gene expression 
(experiments 2 and 4) data obtained at day 7 (experiments 1 and 2) and day 14 (experiments 3 and 4) of a treatment of 450nM 
doxorubicin to stem cell-derived cardiomyocytes indicates a perturbation in α-4 integrins-mediated cell adhesion and migration. 
Upwards or downwards pointing thermometers in red and blue indicate upregulation or downregulation, respectively. 
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Drug design and  
lead identification

Identifying lead candidates is perhaps 
the most important step of the drug 
discovery process. One of these 
contenders could ultimately be the 
next blockbuster drug or conversely 
contribute to the grim drug failure rate 
statistics. The main objectives of lead 
identification are to identify drugs 
of the highest potency that are well-
tolerated in the experimental system. 
There are several strategies that can be 
deployed to identify leads to progress 
for preclinical development, including 
a target-centric approach and high-
throughput phenotypic screens.

Target-centric approach 

The target-centric approach involves 
choosing a well-studied target of 
interest for therapeutic advancement. 
This is the classical approach to drug 
discovery and, until recently, was the 
most popular viewpoint in the industry. 
By combining the information available 
from the 3-dimensional structure of a 
target (e.g., from X-ray crystallography, 
NMR spectroscopy or electron 
microscopy) and computer-aided 

drug design, compounds modulating 
the activity of a given target can 
be virtually created and tested 
experimentally. A similar concept 
can then also be used to identify the 
“off-target” effects. For instance, 
protein-ligand docking analysis of 
the HIV protease inhibitor nelfinavir 
revealed its ability to inhibit a variety 
of kinases involved in cancer, thereby 
providing a hypothesis for its observed 
anti-cancer effects.7 This type of 
analysis would also be beneficial in 
predicting the toxicity of new chemical 
structures based on their predicted 
off-target interactions, especially when 
the adverse outcomes associated 
with the off-targets are already well-
known or previously established.8 

High-throughput phenotypic screens 

Advances in areas from robotics 
and microfluidics to chemical and 
stem cell biology have collectively 
led to the rise and success of 
high-throughput screens (HTS). 
Screening millions of compounds 
on a wide array of substrates 
offers a faster, cheaper method of 
identifying a collection of therapeutic 
candidates. HTS was credited with 
the identification of antimicrobials 

that are new molecular entities 
(NMEs) with a novel mechanism of 
action.9 The HTS approach has also 
simplified running large-scale toxicity 
screens for compound libraries 
and are routinely employed in the 
workflows (e.g., inhibition of the alpha 
subunit of the potassium channel 
or hERG). As the step prior to the 
HTS process, medicinal chemists 
are increasingly relying on in silico 
tools for virtual library screening 
using quantitative structure activity 
relationship (QSAR) and quantitative 
structure in vitro in vivo relationship 
(QSIIR) to make predictions on 
therapeutics properties as well as 
absorption, distribution, metabolism, 
excretion and toxicity (ADMETox). 

Figure 4 (see next page) shows 
QSAR protein binding and toxicity 
predictions for the compound 
doxorubicin hydrochloride. These 
predictions help triage compounds 
entering HTS. While these tools 
themselves are a valuable resource, 
care should be given to also 
incorporate workflows for due 
diligence on pharmacology data, 
off-target effects and success and 
failure rates of similar chemical 
entitites - as seen in Figure 3.

Figure 3: Structure similarity and comparative safety profiles for the drugs sunitinib, vorolanib, toceranib and famitinib.

Source: Bioinfogate OFF-X
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Figure 4: QSAR predictions for doxorubicin hydrochloride.

B. Toxicity prediction: values in red, greater than the cutoff, indicate the high likelihood of the compound exhibiting 
cardiotoxicity, cytotoxicity and epididymis toxicity. Values in parenthesis (TP) refer to the Tanimoto prioritization.

Source: MetaCore, a Cortellis solution

Property Model description Value (TP)

Pgp-inh, pIC50
Human P-glycoprotein transporter inhibition, pIC50 (uM).  
Cutoff is -1.7. The higher the value, the higher the inhibition activity.  
Model description: N=274, R2=0.85, RMSE=0.4.

-0.81 (59.88)

Pgp-sub, prob
Potential to be a substrate of human P-glycoprotein transporter, range from 0 to 1.  
Cutoff is 0.5. Values closer to 1 indicate potential ligands. Reference: Penzotti,  
Lamb, et al., 2002 (PMID: 11960484). Model description: N=192, R2=0.65, RMSE=0.3.

0.93 (99.63)

Property Model description Value (TP)

Cardiotoxicity

Potential for inducing cardiotoxicity. Cutoff is 0.5. Values higher than 0.5 indicate  
potentially toxic compounds. Training set consists of chemicals and drugs causing  
cardiotoxicity in vivo. Model organisms: mouse, rat, human. Model description:  
Training set N=143, Test set N=30, Sensitivity= 0.80, Specificity=1.00, Accuracy=0.90,  
MCC=0.82. Reference: Clarivate Analytics, click here to view training set.

0.94 (99.63)

Cytotoxicity model,  
-log GI50 (M)

Growth inhibition of MCF7 cell line (human caucasian breast adenocarcinoma),  
pGI50. Cutoff is 6. Values from 6 to 8 correspond to a toxic metabolite, values less  
than 6 are preferable, values less than 3 are more preferable and less toxic.  
Reference: DTP/NCI. Model description: N=1474, R2=0.9, RMSE=0.05.

6.67 (99.63)

Epididymis toxicity

Potential for inducing epididymis toxicity. Training set consists of chemicals and drugs  
causing epididymis toxicity in vivo. Model organisms: mouse, rat, human. Cutoff is 0.5.  
Values higher than 0.5 indicate potentially toxic compounds. Model description: Training set 
N=252, Test set N=42, Sensitivity= 0.90, Specificity=0.86, Accuracy=0.88, MCC=0.76.

0.8 (99.63)

A. Protein binding QSAR models: values greater than the listed cutoff indicate the high likelihood of the compound 
inhibiting and being a potential substrate for the P-glycoprotein. Values in parenthesis (TP) refer to the Tanimoto prioritization.
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Drug repurposing

As drug development costs soar, 
finding a new use for an old drug 
is widely being embraced by drug 
developers. For drugs demonstrated 
to be safe and well-tolerated in clinical 
trials but failed to show efficacy, 
exploring potency in other disease 
areas as monotherapy or a part of 
combination therapy is an appealing 
alternative to the time and money 
invested to discover new drug 
candidates. This practice is already in 
place by pharmaceutical companies 
looking to extend revenues and 
patent life of their invested products. 

Correspondingly, drugs with known 
safety issues can be repurposed 
with minimal or no side effects for 
an application different from their 
original intended use. While successful 
repurposing of a drug requires 
access to chemical libraries and drug 
databases,10 supporting information on 
assays, animal models, pharmacology, 
clinical trials and safety data can 
greatly save time and improve the 
efficacy of the repurposing process. 
Figure 5 on the following page shows 
a list of the top 10 potential targets 
for non-alcoholic steatohepatitis 
(NASH) that have drugs available or 
being explored for other indications.

Pharmaceutical 
companies are  
looking to 
repurpose existing 
drugs to extend 
revenues and patent 
life of their products.
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Figure 5: Top nine targets ranked by condition novelty for non-alcoholic steatohepatitis (NASH). 

Source: Cortellis Drug Discovery Intelligence

Rank Target main name Gene 
symbol Drugs Experimental  

pharmacology
Animal  
models

Biomarker 
uses

Genetic  
evidence

filtered total filtered total filtered total filtered total

1 Interleukin-1 beta IL1B 0 768 623 0 119 26 4973 1 614

2 Estrogen receptor ESR1 0 757 2462 0 87 0 2055 2 781

3
Signal transducer  
and activator of 
transcription 3

STAT3 0 490 1233 0 105 8 1995 1 362

4 Apolipoprotein E APOE 0 20 26 8 1264 5 973 1 891

5
Advanced glycosylation  
end product-specific 
receptor

AGER 0 102 72 0 77 5 885 2 179

6
Microsomal  
triglyceride transfer  
protein large subunit

MTTP 0 366 181 2 16 2 97 1 85

7
1-phosphatidylinositol 
4,5-bisphosphate 
phosphodiesterase gamma-1

PLCG1 0 10 111 0 1 0 280 1 65

8 Alpha-1-antitrypsin SERPINA1 0 20 0 0 10 7 1054 1 104

9
HLA class I 
histocompatibility  
antigen, A-1 alpha chain

HLA-A 0 23 40 0 42 0 463 1 398

The table lists the targets and number of records with evidence supporting each heading in the columns.  
Values associated with the total number represent all disease areas including NASH. 
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Understanding organ-specific toxicity while 
reducing the burden on animal testing
Animal testing increases the cost of 
drug development, and there are 
growing ethical concerns on the use 
of animals for biomedical research. 
In addition, underlying differences in 
biological and metabolic pathways 
between animal models and humans 
have often-times resulted in lack of 
translatability. These differences 
manifest as poor drug efficacy in 
humans and/or clinical stage adverse 
events, both of which significantly 
contribute towards drug attrition.

Implementing the 3Rs - Replace, 
Reduce and Refine - by replacing 
animal testing with in vitro and 
in silico approaches, reducing 
the need for animal testing and 
refining experimental design, 
can greatly diminish the burden 
of animal testing. In 2013, a ban 
on vertebrate animal testing for 
European cosmetic ingredients was 
imposed in accordance with the 

7th amendment of the European 
Cosmetic Directive. A subsequent 
report from the transatlantic think tank 
on toxicology has laid out guidelines 
for alternative (animal-free) methods 
for toxicity testing.11 One of the 
main highlights calls for the use of an 
integrative testing strategy, where 
one methodology is not deemed 
as the gold standard. Instead, the 
emphasis is to facilitate multiple in vitro 
testing methods to draw conclusions 
and to model and predict adverse 
outcomes with 100% accuracy using 
a system’s biology approach. 

Indeed, as described in the previous 
section, high-throughput screening 
has significantly impacted our ability 
to quickly test libraries of compounds 
at multiple dosing intervals. Moreover, 
recent advances in stem cell, gene 
editing and microfluidics technologies 
has made it easier to execute 2D, 3D 
and cell co-culturing techniques on a 

large scale. When combined with the 
right cell/tissue/organ assay, toxicity 
studies can be performed in large 
scale in vitro to recreate relevant tissue 
microenvironments. The approach 
of collecting a large number of 
datapoints would significantly improve 
the development of more accurate 
prediction models and provide a 
mechanistic understanding of pathways 
underlying adverse events (adverse 
outcome pathways [AoPs]). Such a 
mechanistic understanding would 
greatly benefit researchers to reliably 
make informed go or no-go decisions 
when developing NMEs or investigating 
the potential to repurpose drugs. 
Concurrently, the US Environmental 
Protection Agency’s ToxCast and 
Tox21 programs aim to achieve a 
mechanistic understanding behind 
toxicities related to environmental and 
industrial chemicals, with the hope that 
these may serve as a tool to develop 
regulatory strategies in the future.12

The personalized medicine approach
Next-generation sequencing 
technology has advanced at an 
incredibly fast pace, leading to low 
costs in whole-genome sequencing 
and the ability to make multitudes 
of comparisons based on a broad 
range of factors. This has ushered 
in the era of toxicogenomics (and 
pharmacogenomics), which has 
provided researchers with large 
quantities of OMICs datasets to 
examine the mechanistic role of a drug 
or a toxicant in adverse events. One 
example of this would be assessing 
the influence of gene variants on the 
risk for adverse events. Identifying this 
relationship would help determine a 
patient segment that would benefit 
most from a given drug and the 

maximum tolerated dose for a given 
individual. A well-known example of 
the influence of genetic variability on 
drug-induced adverse events is the 
observed cardiotoxicity in women 
receiving doxorubicin chemotherapy, 
which is exacerbated when used in 
combination with Trastuzumab.13,14

Similarly, there is growing interest in 
understanding how epigenetics plays 
a role in determining susceptibility 
or increased risk for toxicity – also 
called pharmacoepigenomics. 
Differences in DNA methylation and 
histone acetylation are associated 
with resistance to chemotherapy; the 
expression of certain genes involved 
in the pharmacogenomics and 

pharmacodynamics of a therapeutic is 
modulated. 15 Such a change could not 
only impact the efficacy of a drug but 
also potentially lead to altered safety. 

Understanding the disease 
biology at the patient level could 
therefore have major implications 
on treatment regimens where a 
drug and the dose are customized 
based on known factors contributing 
to a disease. Furthermore, a 
comprehensive understanding of 
biomarkers used for monitoring or 
predicting treatment toxicity could 
help guide clinicians through this 
process. Figure 6 shows a select 
list of biomarkers used to predict 
treatment toxicity in breast cancer.



10

Biomarker name Biomarker type Highest validity Role Technique Substrate Validity

Carbonyl  
reductase  
[NADPH] 1

Genomic
Late Studies  
in Humans

Predicting 
Treatment  
Toxicity

PCR +  
DirectSeq  
(DNA)

DNA
Early Studies  
in Humans

Dihydropyrimidine 
dehydrogenase  
[NADP+]

Proteomic; 
Genomic

Recommended  
/ Approved

Predicting 
Treatment  
Toxicity

Genotyping 
(DNA)

DNA
Late Studies  
in Humans

Dimethylaniline  
monooxygenase  
[N-oxide-forming] 2

Proteomic; 
Genomic

Late Studies  
in Humans

Predicting 
Treatment  
Toxicity

Real Time  
PCR (DNA)

DNA
Early Studies  
in Humans

Histamine 
N-methyltransferase

Proteomic; 
Genomic

Late Studies  
in Humans

Predicting 
Treatment  
Toxicity

Real Time  
PCR (DNA)

DNA
Early Studies  
in Humans

Hyaluronan  
synthase 3

Proteomic; 
Genomic

Late Studies  
in Humans

Predicting 
Treatment  
Toxicity

PCR +  
DirectSeq  
(DNA)

DNA
Early Studies  
in Humans

Figure 6: Select list of biomarkers used to predict treatment toxicity in breast cancer.

Source: Cortellis Drug Discovery Intelligence

Role of artificial intelligence (AI) 
A recurring theme in the previous 
sections is the advancement in 
technology that has provided 
the ability to quickly test multiple 
hypotheses and armed us with 
the necessary data to make 
informed decisions. Access to such 
large quantities of experimental 
data is crucial to gain a deeper 
understanding of the mechanisms 
related to toxicity and subtle 
differences in the genetic makeup 
that influence the maximum tolerated 
dose or efficacy of drug in different 
individuals. The next challenge 
therefore is quickly and efficiently 
managing and processing the 
mountains of data in a way that is 

meaningful and free of human bias. 
For this precise reason, there is an 
obvious need to incorporate AI and 
machine learning algorithms into data 
analysis workflows. To accomplish this, 
we need to understand the common 
types of data for which AI could be 
useful in analyzing and the potential 
approaches to handling them.

OMICs data 

In the context of toxicology, OMICs 
data analysis would primarily be 
geared towards identifying biomarkers 
and constructing AoPs. This would 

be facilitated through computational 
methodologies that prioritize and 
validate the genes involved in adverse 
outcomes. A crucial component of 
this approach is consideration of the 
prior knowledge of the interactome 
(i.e, known interactions amongst 
the genes in an organism, including 
the genes being sampled and 
their neighborhood) and known 
associations of the members of the 
interactome and their mechanistic 
association to toxicity. Knowledge of 
protein-protein interaction networks is 
increasingly being used to determine 
drug-related side effects, and 
some of these examples have been 
previously reviewed and presented.16
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High-throughput screens

The datasets generated from high-
throughput screening rely heavily on 
computational methods to crunch 
numbers to generate dose-response 
curves and predict the median 
lethal dose, or LC50, for a set of 
compounds. However, there is also 
growing demand for machine learning 
methods to tackle image recognition 
and classification in context to 
toxicology. Machine learning tools 
have been successfully used to 
understand the tissue pathology 
and to distinguish cancerous from 
non-cancerous regions.17 Therefore, 
a similar concept can be used 
for image-based cardiotoxicity 
screening bioassays to predict 
dose-dependent cardiotoxicity.18 

Pharmacokinetics and 
pharmacodynamics 
modeling 

While ADME/Tox QSAR models 
have been around for a few decades, 
machine learning of pharmacokinetics 
data was used for the first time to 

predict patient-specific irinotecan 
toxicity in patients with metastatic 
colorectal cancer.19 Anthropomorphic, 
biochemical and analytical data 
from individual patients were used 
to predict drug-induced side effects 
with 91% accuracy. Such predictions 
can have huge implications for 
personalized medicine, where 
fine tuning of pharmacokinetics 
factors based on patient data could 
significantly diminish adverse events.

Anthropomorphic, 
biochemical and 
analytical data  
from individual 
patients were used 
to predict drug-
induced side effects 
with 91% accuracy.
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Looking forward to a ‘safe’ future
The ballooning cost of human 
healthcare has forced the question 
of whether the current practices 
in the healthcare industry are even 
sustainable. As the cost of bringing 
a drug to the market increases each 
year, we need to take a hard look at the 
underlying factors contributing to these 
numbers. Drug-induced toxicity and 
adverse events figure prominently at 
the core of these issues. In this review, 
we have looked at the best practices 

that are being implemented at various 
levels to streamline the process 
and make it more cost-effective. 

A central theme that has emerged from 
this evaluation is the increased reliance 
on big data and the need for multiple 
testing to enhance the accuracy of 
adverse event predictions. As a result, 
there is a growing dependence on AI 
to quickly and reliably sift through the 
volumes of data and make accurate 

predictions of drug-induced toxicity 
and a patient’s susceptibility based 
on age, ethnicity, gender, and 
other characteristics. The future of 
economically viable drug development 
programs that deliver safe and 
efficacious therapies lies in changing 
our approach towards toxicology. No 
matter at which stage of the process 
our expertise lies, by implementing the 
strategies outlined in this paper, we can 
collectively be a part of the change.

AI challenges 
While AI offers an exciting solution 
to our ever-growing problem of 
analyzing big data, we need to err on 
the side of caution. As with any new 
technology, there are some challenges 
associated with developing AI.

High-quality data

For machine learning, high-quality 
training datasets are needed to make 
accurate predictions. Whether it is 
ADMETox prediction models such 
as the ability of a compound to block 
the hERG channel or predicting 
tissue pathology based on image 
recognition, the quality of underlying 
data is very important to determining 
prediction accuracy. Similarly, other 
computational algorithms used for target 
deconvolution and biomarker prediction 
rely on the quality and granularity of 

prior published knowledge of the 
interactome, disease and toxicity 
associations. Thus, it is critical to source 
the information from a reliable and 
experimentally validated source. 

Another major challenge for machine 
learning is the need for large quantities 
of datapoints to be fed into the model in 
order to achieve a high level of accuracy. 
Because of this, developers often turn 
to public data sources with the caveat 
that the data sourced may not be a 
true representation of the biological or 
experimental condition being modeled. 
A variety of public and commercial 
databases offer curated information 
on drug pipelines, and these could be 
important sources of information for 
machine learning. A recent study on 
HIV-1 integrase, protease and reverse 
transcriptase inhibitors illustrates the 
utility of these types of resources 
for developing QSAR models.20

Reproducibility 

The use of computational 
techniques to solve biological 
problems is a relatively young 
field. To be incorporated into 
routine drug discovery workflow, 
these methodologies need to be 
reproduced and validated. Citing 
the lack of reproducibility and 
existing guidelines for reporting 
and publishing new algorithms, 
a recent paper from the Allen 
Institute for Artificial Intelligence 
developed a checklist for reporting 
experimental results; the checklist 
includes providing details on 
computational infrastructure, 
training sets and performance, 
implemented code and average 
run-time.21 Implementation of this 
type of strategy will help streamline 
the use and validity of computational 
techniques in the future.
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