Biomarker ID and patient stratification

Transforming patient care with AI-Powered Biomarker Analysis

Description

Analyze existing omics data - internal or from published datasets - to confidently stratify patients, monitor treatment efficacy and improve clinical trial design.

Expertise include but not limited to analyzing:

Genomics and Epigenomics

Transcriptomics

Other omics

- Single-cell and spatial omics
- Metabolomics
- Proteomics
- Integrative multi-omics
- Pharmacogenomics
- Toxicogenomics

Methodology

Inputs

- Public or client single or multi-omics datasets
- Clinical data; medical records; Real-World Data

Workflow

Data harmonization and integration

Transform, scale, reduce, standardize and extract relevant features

Multimodal data fusion

Early | Intermediate | late fusion

Al modelling

Supervised, unsupervised, deep learning

Subgroup identification

Tree/Nontree methods

Performance evaluation

Explore quantitative metrics and use statistical analysis to identify patterns or correlations.

Output

 Tailored analysis using the most suitable workflow for your data.

Optimize

- •Clinical trial design
- •Treatment decisions

Develop

- Companion diagnostics
- •Investigational assays

Build

 Models and pipelines for systematic evaluation

Discover & validate

- Signatures and biomarkers
- Patient subpopulations
- Mechanism of Action

- ✓ Predictive
- ✓ Prognostic
- ✓ Safety
- ✓ Risk
- ✓ Diagnostic
- ✓ Response
- ✓ Monitoring

 Interactive reports with visualizations and enriched data that enable quicker, cost-effective and informed decisions towards personalized medicine.

Typical Project Timeline

From 4 weeks, subject to complexity

